Do the generalized polynomial chaos and Fröbenius methods retain the statistical moments of random differential equations?
نویسندگان
چکیده
منابع مشابه
Do the generalized polynomial chaos and Fröbenius methods retain the statistical moments of random differential equations?
The aim of this paper is to explore whether the generalized polynomial chaos (gPC) and random Fröbenius methods preserve the first three statistical moments of random differential equations. There exist exact solutions only for a few cases, so there is a need to use other techniques for validating the aforementioned methods in regards to their accuracy and convergence. Here we present a techniq...
متن کاملPolynomial Chaos Expansions for Random Ordinary Differential Equations
We consider numerical methods for finding approximate solutions to Ordinary Differential Equations (ODEs) with parameters distributed with some probability by the Generalized Polynomial Chaos (GPC) approach. In particular, we consider those with forcing functions that have a random parameter in both the scalar and vector case. We then consider linear systems of ODEs with deterministic forcing a...
متن کاملPolynomial Chaos for Linear Differential Algebraic Equations with Random Parameters
Technical applications are often modeled by systems of differential algebraic equations. The systems may include parameters that involve some uncertainties. We arrange a stochastic model for uncertainty quantification in the case of linear systems of differential algebraic equations. The generalized polynomial chaos yields a larger linear system of differential algebraic equations, whose soluti...
متن کاملGeneralized polynomial chaos and random oscillators
We present a new approach to obtain solutions for general random oscillators using a broad class of polynomial chaos expansions, which are more efficient than the classical Wiener–Hermite expansions. The approach is general but here we present results for linear oscillators only with random forcing or random coefficients. In this context, we are able to obtain relatively sharp error estimates i...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2013
ISSN: 0893-9659
DOI: 10.1016/j.aml.2012.12.013